Trends and Challenges in Analog and Mixed-Signal-Verification

Trust, but verify - Ronald Reagan

Dieter Haerle 17.5.2018

	Introduction Presenter
2	Definitions
3	Motivation
4	What is "Analog-Mixed-Signal Verification"?
5	History / State of the Art
6	Trends and Challenges in AMS-Verification
7	Conclusion

	Introduction Presenter
2	Definitions
3	Motivation
4	What is "Analog-Mixed-Signal Verification"?
5	History / State of the Art
6	Trends and Challenges in AMS-Verification
7	Conclusion

Family, 2 children Scuba Dive Instructor, ballroom dancing, Salsa, snow boarding, cycling,

- GmbH
 - project manager
- Personal

- 1990-1996 Studies of Electrical Engineering at TU Karlsruhe, Germany
- Project Manager for research projects >
- Steps in my career >

Dieter Haerle

>

Dieter Haerle, KAI (Kompenzzentrum für Automobil- und Industrieelektronik) Research institute owned by Infineon Austria

- 1996-1999 R&D department of semiconductor memories at Siemens, Munich
 - analog design
- 1999-2003 Semiconductor Division of Mosaid Technologies Inc, Ottawa, Canada
 - analog design, concept engineering, technical design team lead
- 2004-2014 Automotive Division of Infineon Technologies AG Austria, Villach
 - analog design, concept engineering, line manager, technical design team lead
- 2014 present Kompetenzzentrum für Automobil- und Industrieelektronik

Copyright © Infineon Technologies AG 2018. All rights reserved.

KAI – competence center

- Kompetenzzentrum Automobil- und Industrielektronik GmbH (www.k-ai.at)
- Scientific work on predevelopment topics in the course of applied research in close cooperation with the Infineon development engineers
- Fostering of the scientific network through cooperation with universities and attendance of conferences
- > Active **cross business unit** knowhow transfer
- > Education of future IFAT employees

KAI - Facts & Figures

- > Foundation : 12/2005 as a cooperative research center
 - Since Oct. 2013 a 100% subsidiary of IFAT (Infineon Technologies Austria AG)
- > Office / Laboratory in total ca. 800 m² at Technology Park Villach
- > Managing Director : Dipl. Ing. Josef Fugger, Mag. Peter Zeiner
- > Employees: ~50
 - Thereof ~15 PhD students, ~5 MSc students,
 - ~10 more PhD students employed at university partners
- > Financing: projects financed by Infineon and public funding
 - Funding project "EM2APS" in cooperation with Infineon Technologies and academic partners (FFG-Basisprogramm)
 - Active participation in European funding projects (Powerbase, SemI40)
 - Funding bodies: FFG, (KWF), ENIAC/ECSEL

Research landscape KAI

Copyright © Infineon Technologies AG 2017. All rights reserved.

	Introduction Presenter
2	Definitions
3	Motivation
4	What is "Analog-Mixed-Signal Verification"?
5	History / State of the Art
6	Trends and Challenges in AMS-Verification
7	Conclusion

Definitions

- **Analog-Mixed-Signal design vs. Analog design** -> in this presentation mainly Analog-Mixed-Signal design is considered, because in my personal opinion pure analog design/verification is dying out and will only be used in very special cases anymore.
- The PMBOK guide (A Guide to the Project Management Body of Knowledge), a standard adopted by IEEE, defines Validation and Verification as follows in its 4th edition:
 - "Validation. The assurance that a product, service, or system meets the needs of the customer and other identified stakeholders. It often involves acceptance and suitability with external customers. Contrast with verification."
 - "Verification. The evaluation of whether or not a product, service, or system complies with a regulation, requirement, specification, or imposed condition. It is often an internal process. Contrast with validation."

	Introduction Presenter
2	Definitions
3	Motivation
4	What is "Analog-Mixed-Signal Verification"?
5	History / State of the Art
6	Trends and Challenges in AMS-Verification
7	Conclusion

Verification is the science (and art) of asking the question, "What could possibly go wrong?" [Bryon Moyer]

Motivation

- > Increasing quality requirements,
- Increasing circuit complexity,
- > Demand for faster development cycles,
- Increasing demand for traceability of requirements / specification points

currently drive the mixed signal verification methodology to its limits.

Situation:

- > Simulation times are becoming excessively long
- Simulation complexity increases beyond the ability to cope with it.

New verification concepts have to be developed!

	Introduction Presenter
2	Definitions
3	Motivation
4	What is "Analog-Mixed-Signal Verification"?
5	History / State of the Art
6	Trends and Challenges in AMS-Verification
7	Conclusion

Understanding of Mixed Signal Verification 2011

Martin Vlach, Chief Technologist AMS, FAC 2014

Four Kinds of AMS Verification

Functional Verification

 The task of verifying that digital logic and analog input-output requirements are met

Parametric Verification

The task of verifying that numerical requirements are met

Implementation Verification

 The task of verifying that functional and parametric requirements are met considering all the ways that circuits can "go wrong" in an "analog way"

Reliability Verification

 The task of verifying that requirements continue to be met as prescribed by the reliability requirements.

GMentor

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.com

5 Mixed Signal Verification July 2014

Is this still true?

2018-05-08

	Introduction Presenter
2	Definitions
3	Motivation
4	What is "Analog-Mixed-Signal Verification"?
5	History / State of the Art
6	Trends and Challenges in AMS-Verification
7	Conclusion

Analog Verification at the Beginning

- Rough customer specification
- > Create circuit schematic
- Think about, what has to be verified first (first verification requirement)
- Create test bench in the same schematic and run one test to simulate/verify first verification requirement for nominal process parameters
- Think about, what has to be verified next (second verification requirement)
- Modify schematic with first test bench to be able to simulate/verify second verification requirement

) ...

I have recently seen analog designers still doing it this way!!!!!

Next steps done so far (not necessarily in this order)

- > Separation of test bench and circuit schematic
- > Introduce circuit abstraction in verification (modelling, ...)
- Verification plan (including functional and parametric verification) before starting a verification
- > Extending functional and parametric verification to EMC, ESD, ... verification
- More precise specification for verification including verification conditions for specification parameters
- Moving to Analog-Mixed-Signal verification (analog and digital circuits together). Usually digital circuits are only used to stimulate the analog part.
- Separating design and verification tasks between design engineer and dedicated, specialized verification engineer
- Automated regression tests
- Analog/mixed signal UVM

> ..

Current Situation

- Extremely heterogeneous landscape regarding mixed signal verification (from pure single analog simulation done by the design engineer to extremely complex regression suites done by dedicated mixed signal verification specialists)
- Specification for analog circuits still done with unformal verbal text (prose text). Traceability of specification requirements very difficult.
- > In many cases no reference model available for verification
- Extremely long run times for mixed signal verification (e.g. we looked at typical SAR ADC and we tried to create a typical regression suite for it. This regression suite then took several weeks of pure simulation time)
- Very high verification effort also in setting up the test benches (man-power)

So far there is no systematic way to verify a analog/mixed signal design

1	Introduction Presenter
2	Definitions
3	Motivation
4	What is "Analog-Mixed-Signal Verification"?
5	History / State of the Art
6	Trends and Challenges in AMS-Verification
7	Conclusion

Trends

- More extensive use of models
- Separate Analog-Mixed-Signal verification engineer (more programming-intensive compared to analog designer)
- In Automotive: ISO26262 demands even more verification tasks (like FMEDA verification, Fault Injection, ...)
- > Better documentation and traceability of verification
- Automated test benches -> regression testing
- > Mixed signal UVM
- > Use of requirement database instead of prose specification
- "Verification in the field": Chip Health Monitoring / Preventive Maintanance
- > BISTS to enable "Verification in the field" over lifetime

Challenges in AMS-Verificaton

- Model verification
- Convergence topics
- Verification metrics: Fault coverage / test coverage in analog circuits
- Several Power Supply Domains -> Interactions
- With corner simulations there is no guarantee that worst case is covered -> Monte Carlo Simulations take a lot of time
- Automated test benches -> automatic checkers only cover part of the analysis, how to cover the rest?
- > No systematic methods available
- > No formal methods available

Challenges in AMS-Verification

- Increasing verification requirements challenge designers and verification engineers
 - Functional verification
 - Parametric verification
 - Post layout verification
 - Corner simulation verification
 - Monte Carlo simulation verification
 - EMC verification
 - ESD verification
 - FMEA/FMEDA verification
 - Verification of "orderly" destruction of chip in case of system failure (especially automotive)
 - "Out of spec" verification (especially automotive)
 - Documentation of verification
 - Reliability/aging verification (reliability over lifetime)
 - Mixed signal UVM leads to exponentially increasing simulations

	Introduction Presenter
2	Definitions
3	Motivation
4	What is "Analog-Mixed-Signal Verification"?
5	History / State of the Art
6	Trends and Challenges in AMS-Verification
7	Conclusion

Conclusion

- Increasing requirements for AMS-Verification drive verification time and verification effort to uneconomical dimension
- > Documentation and traceability efforts explode

New, systematic and efficient ways of AMS-Verification need to be found

Part of your life. Part of tomorrow.

