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Towards Fast Parametric Identification for STL

We work on a new algorithm for parametric identification in signal temporal logic. For a real-valued
signal and a parameterized temporal logic formula, we want to find the set of parameter values that
makes the formula satisfied by the signal. We have a working algorithm for identification of spatial
parameters in piecewise-constant signals, which performs well in our experiments. Identification of
time parameters is an ongoing work.

Introduction and Background

Signal temporal logic (STL) [3] is designed to handle real-valued dense-time signals and describe be-
haviors of continuous and hybrid systems. The problem of parametric identification in STL is introduced
in [1]. It uses PSTL, a version of STL, admitting formulas where some of the constants are replaced by
parameters. Every set of parameter values v ∈ V transforms a PSTL formula into an STL formula. The
problem is to compute the validity domain of a PSTL formula relative to a signal, i.e., the set of param-
eter valuations that make the formula satisfied by the signal. Such a procedure can be used in principle,
to derive a concise description of the input-output relation of a large SPICE-level circuit model based
on simulation traces. In [1], two approaches are proposed for piecewise-linear signals: using quantifier
elimination in a formula of the size linear in the length of the signal, and using search. We aim to pro-
duce an efficient algorithm for piecewise-constant signals. One can view it as a specialized quantifier
elimination procedure exploiting the structure of the problem, e.g., that input is ordered by time.

The syntax of PSTL is as follows: ϕ ::= true | x≤ a | x≥ a | ¬ϕ | ϕ1∨ϕ2 | F[a,b]ϕ | ϕ1 U ϕ2
where x is a signal component, and a,b are real constants or parameters. We restrict a parameter to have
fixed type (space parameters appear in inequalities; time parameters – in temporal windows) and polarity
(in the negation normal form, positive parameters appear as upper bounds; negative – as lower bounds).

Identifying Space Parameters

Our algorithm works by induction on the formula structure. For every sub-formula we build the validity
signal. For every time point, it gives the set of parameter values that make the subformula satisfied by the
signal, starting from that time point. Here, we show how this works for the atomic comparison x≤ p and
timed eventually F[a,b]ϕ where a,b are constants. In Fig. 1, we show an example of a piecewise signal
component x, taking values c1 through c3 as time progresses.
Atomic Comparison For an atomic comparison x ≤ p, for a segment where x equals ci, we assign the
validity set p≥ ci. This is shown in Fig. 2.
Timed Eventually For a F[a,b]ϕ where a,b are constants, parameter identification can be solved as a
quantifier elimination problem. We show an example of that in Fig. 3. In the figure, the validity signal
of ϕ (in the top) can be seen as a disjunction: (0 = t0 ≤ t < t1 ∧V1)∨ ·· · ∨ (t2 ≤ t ≤ t3 ∧V4). Then,
the validity signal of F[a,b]ϕ can be seen as ∃t. (t + a ≤ t ′ ≤ t + b)∧ (t0 ≤ t ′ < t1 ∧V1)∨ ·· · ∨ (t2 ≤
t ′ ≤ t3 ∧V3), which after quantifier elimination becomes (t0− b ≤ t < t1− a∧V1)∨ ·· · ∨ (t2− b ≤ t ≤
t3−a∧V3). The intervals [ti−1−b, ti−a) in general overlap, and in our algorithm, we create from them
a partition of the time domain, taking union of the validity sets, where intervals overlap, and merging
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Figure 1: A component of a piecewise-constant
signal.

0

p≥ c1

t1t1

p≥ c2

t2t2

p≥ c3

t3

Figure 2: Validity signal for the expression x≤ p.
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Figure 3: Constructing the validity signal for F[a,b]ϕ .

consecutive intervals labelled by identical validity sets. This is shown in the bottom of Fig. 3. In our
setting, every interval is mapped to a union of upward-closed rectangles, with dimensions of a rectangle
corresponding to parameters. The main technical challenges here are computing unions of validity sets
over a running window (we use a variant of Lemire’s algorithm [2]), and efficient manipulation of Pareto-
like validity sets (planned for future work). When resulting validity sets have small representations, our
implementation can process signals with millions of intervals in under a minute.

Identifying Time Parameters
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Figure 4: Constructing the va-
lidity signal for F[a,p]ϕ .

With time parameters, validity signals can still be piecewise-constant,
if we allow validity sets to be template polyhedra. Then temporal op-
erators will induce templates that are expressions over time parameters
and absolute time. Fig. 4 shows an example of constructing the validity
signal for the expression F[a,p]ϕ where p is a parameter and ϕ does not
contain time parameters. The upper bound of the temporal window p,
instead of affecting the start time of the shifted intervals, now creates
constraints on t + p, where t is the value of time; further operations
will also create constraints on just p. We are now working on an algo-
rithm that would compute validity signals for different combinations of
parameters in temporal windows and in validity signals. In general, a
temporal operators with a time parameter creates two new templates in
the validity sets and changes existing templates that depend on t.
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