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Abstract

In this work, we explore novel artificial intelli-
gence (AI) solutions for the verification of analog
and mixed-signal (AMS) complex integrated cir-
cuits (IC). The main target is to improve the time
performance and the accuracy of the verification
process of AMS circuits. In this regard, we de-
velop numerous neural network models for AMS
ICs, and utilize such models into the verification
process. We show that such methods can result in
gaining up to two orders of magnitude speed-up
in the fault-injection simulations of ICs. In terms
of developmental-efficiency and automation perfor-
mance, our AI modeling suite is superior over ex-
isting methods.

1 Introduction
One challenging issue in the verification process of analog
and mixed signal (AMS) ICs is the development of high
performance models for carrying out time-efficient simula-
tions. Transistor-level fault simulations of a single IC can
take up to one or two weeks to be completed. Figure 1A-left
shows the fast-fault-injection method (FFIM) where one can
model some parts of the a complex IC with top-level mod-
els and inject fault in the transistor-level of the small remain-
ing part of the IC, in order to gain speed-ups in the fault-
simulations. Figure 1B demonstrates an accuracy versus per-
formance trade-off between various modeling approaches for
the FFIM. In the present study, we propose various neural net-
work (NN) architectures for modeling parts or the entire Ana-
log IC and illustrate their accuracy and time-performance.

2 Methods
NNs are designed in MATLAB and TensorFlow and were in-
tegrated into Cadence design environment by the available
co-simulation toolboxes such as MATLAB/AMS Designer
Cosimulation platform for the MATLAB NN models and
Inter-Process Communication for Python models. We now
describe various neural network architectures have been de-
signed and to be designed:

2.1 NARX models of ICs
We introduced a black-box method for automatically learn-
ing an approximate but simulation-time efficient high-level
abstraction of given analog integrated circuit (IC) in [Hasani
et al., 2016]. The learned abstraction consists of a non-
linear auto-regressive neural network with exogenous input
(NARX), which is trained and validated from the input-output
traces of the IC stimulated with particular inputs. We showed
the effectiveness of such approach on the power-up behavior
and supply dependency of a CMOS band-gap reference cir-
cuit (BGR) (See Figure 1D). The approach is scaleable to the
modeling of overall behavior of an IC (See Figure 1E as an
example of the NARX network architecture).

2.2 Compositional Neural Network Models of ICs
We introduced a compositional method for the construction
of a neural-network (NN) capturing the dynamic behavior
of a complex analog multiple-input multiple-output (MIMO)
system [Hasani et al., 2017]. The method first learns for
each input/output pair (i, O), see Figure 1A-right, a small-
sized NARX network representing the transfer-function hiO.
The training dataset is generated by varying input i of the
MIMO, only. Then, for each output O, the transfer functions
hiO are combined by a time-delayed neural network (TDNN)
layer, fO. The training dataset for fO is generated by vary-
ing all MIMO inputs. The final output is f =(f1, . . ., fn).
The NN’s parameters are learned using Levenberg-Marquardt
back-propagation algorithm. We applied our method to learn
an NN abstraction of a BGR. First, we learned the NARX
NNs corresponding to trimming, load-jump and line-jump re-
sponses of the circuit. Then, we recomposed the outputs by
training the second layer TDNN structure. We demonstrated
the performance of our learned NN in the transient simulation
of the BGR by reducing the simulation-time by a factor of 17
compared to the transistor-level simulations. Such method
allows us to map particular parts of the NN to specific behav-
ioral features of the BGR.

2.3 MLP Models of ICs
Multilayer-perceptrons were employed for modeling of a
BGR, and illustrated remarkable accuracy on a test set. Fig-
ure 1F shows the output of a BGR together with its 6-layered
time-delayed neural nets (TDNN) response. Besides the
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Figure 1: Overview. A) left: fault injection method, middle: a CMOS bad-gap reference circuit (BGR), right: decomposition
and recomposition of behavioral functions of a BGR, to be modeled by neural networks. B) A trade-of between accuracy and
speed performance of various AMS ICs’ modeling approaches. C) Sample architecture of a deep neural net. D) sample learned
behavioral feature of a BGR by a NARX network. E) Single layer small-sized NARX network. F) sample output of an IC
together with its neural network model after the training process to a test set.

high-level of accuracy, by using such models we gain a simu-
lation speed-up with a factor of 20 up to 50 depending on the
circuit while maintaining a high level of accuracy.

2.4 LSTM models of Analog ICs
We are currently developing long short-term memory
(LSTM) recurrent networks for modeling CMOS Oscillator,
BGR and floating regulator circuits. Our aim is to achieve
much better accuracy compared to the previously developed
models. Python models are being designed in TensorFlow
and will be co-simulated in Cadence environment using Inter-
Process Communication (IPC).

3 Next Steps
• Developmet of more integrated circuit’s models by neu-

ral networks in order to assess the overall pros and cons
of the approach

• Trying various architectures of neural networks and
benchmark them against each other.

• Find an efficient procedure for inclusion of the NN mod-
els into the Cadence design environment.

• Employ our neural network models into the actual ver-
ification process of the AMS circuits and evaluate the
time-performance and fault-coverage rate of the method.

4 Final Note
Artificial intelligence and in particular deep learning solu-
tions for various industrial applications is rapidly growing
towards providing smarter, safer and autonomous methods.
Accordingly, within the next couple of years, an improved
version of our approach is going to merge existing efficient
methods for the verification of AMS ICs into a global au-
tonomous smart verification suit which will presumably turn
into the common method for fast and reliable pre-silicon ver-
ification of AMS integrated circuits.
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